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Abstract
We consider the energy-averaged two-point correlator of spectral determinants
and calculate contributions beyond the diagonal approximation using
semiclassical methods. Evaluating the contributions originating from pseudo-
orbit correlations in the same way as in Heusler et al (2007 Phys. Rev. Lett. 98
044103) we find a discrepancy between the semiclassical and the random matrix
theory result. A complementary analysis based on a field-theoretical approach
shows that the additional terms occurring in semiclassics are canceled in field
theory by so-called curvature effects. We give the semiclassical interpretation
of the curvature effects in terms of contributions from multiple traversals of
periodic orbits around shorter periodic orbits and discuss the consistency of
our results with previous approaches.

PACS numbers: 05.45.Mt, 03.65.Sq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is currently accepted that progress on the long path to rigorous grounds of the Bohigas–
Giannoni–Schmit (BGS) conjecture [1], stating the emergence of universal fluctuations in the
quantum spectra of systems with classical chaotic dynamics, depends on the understanding of
correlations among the actions of classical periodic orbits. This idea was pioneered in Berry’s
seminal paper [2], showing how to incorporate the most basic kind of action correlations into
the semiclassical calculation of the spectral form factor. Berry’s calculation, referred to as
the diagonal approximation, considers the contribution from orbit pairs with exactly the same
action, i.e. orbits paired with themselves or their time-reversed counterpart in the case of time-
reversal symmetry. This calculation reproduces the leading order in a short-time expansion
of the form factor obtained from random matrix theory (RMT) (or the leading order in an
expansion in the inverse energy difference of the RMT spectral correlator).
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Figure 1. Sketch of the orbit correlation mechanism described in [3].

In seeking classical correlations beyond the diagonal approximation, Sieber and Richter
succeeded [3] in calculating the next-to-leading-order contribution to the form factor for
time-reversal invariant systems semiclassically. The correlated classical trajectories studied
there are two orbits approaching each other exponentially everywhere except in the vicinity
of a self-crossing, as shown in figure 1. This approach was then generalized, leading to the
semiclassical calculation of the RMT form factor for times smaller than the Heisenberg time,
TH [4]. Based on the analogy between semiclassics and field theory, the form factor for times
larger than TH could be obtained in [5].

The approaches dealing with times smaller than the Heisenberg time started from the
density of states d(E), defined in terms of the spectrum {En} as

d(E) =
∞∑

n=1

δ(E − En), (1)

which is approximated semiclassically by the Gutzwiller trace formula [6],

dG(E) = d̄(E) +
1

πh̄
�

∑
p

T prim
p Dp(E) eiSp(E)/h̄. (2)

It contains a smooth part, the mean level density d̄(E), and an oscillatory part expressed as a
sum over classical periodic orbits p possessing the classical actions Sp, the primitive periods
T

prim
p and the stability amplitudes Dp(E); for their exact form, see [6]. The Gutzwiller trace

formula incorporates, however, the drawback that it is divergent, since it contains an infinite
sum over an exponentially proliferating number of periodic orbits.

This problem of the Gutzwiller trace formula renewed the interest in the semiclassical
theory of spectral determinants. The quantum spectral determinant is defined as

�(E) =
∞∏

n=1

�(E,En)(E − En), (3)

where �(E,En) is a regularization factor without real zeros. The density of states, considered
before, is proportional to the imaginary part of the logarithmic derivative of this determinant.
The crudest semiclassical approximation for the spectral determinant is its representation
as an infinite product over the classical orbits p occurring in the Gutzwiller trace formula.
Equivalently, �(E) can be written as an infinite sum over composite orbits, so-called pseudo-
orbits A with overall actions, and stabilities given, respectively, by the sum and the product of
the actions and stabilities of all possible subsets of periodic orbits with nA elements [7]:

�G(E) = B(E) e−iπN̄(E)
∏
p

exp{−Dp(E) eiSp(E)/h̄}

= B(E) e−iπN̄(E)
∑
A

(−1)nAFA(E) eiSA(E)/h̄. (4)

Here N̄(E) is the mean number of states up to energy E, and B(E) is a regularization factor.
This form is divergent, as it is only based on the Gutzwiller trace formula. However, by
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directly imposing that the spectral determinant is real for real energies, a semiclassical theory
of the spectral determinant can be constructed. Such an approach was developed by Berry and
Keating [8] and obtained by Georgeot and Prange using the Fredholm theory [9]. Thereby,
an improved (resurgent) semiclassical approximation to the quantum spectral determinant is
obtained. It is given by

�R1(E) = 2��G
TH /2(E), (5)

where �G
TH /2(E) is obtained from �G(E) by including only pseudo-orbits with periods smaller

than TH/2. Taking the real part assures that �R1(E) is real for real energies. Moreover,
truncating the sum over pseudo-orbits makes �R1(E) convergent. In this paper, we will also
consider

�R2(E) = 2��G(E), (6)

imposing only the spectral determinant to be semiclassically real.
Starting from the semiclassical approximation �G(E), [5] considered a generating

function containing in the numerator and in the denominator two spectral determinants at four
different energies. By taking derivatives with respect to two energies, identifying afterwards
the two energies in the numerator with the two energies in the denominator in two different
ways and adding the results of these identifications, they obtain the full RMT form factor. The
idea then pursued in [10] was to use the representation (5) for the spectral determinant instead
of �G(E) and to consider only one identification of the energies. Due to complications from
the finite cutoff of the sum defining �R1(E), the authors of [10] used thereby �R2(E).

In this paper, we consider the question, how to obtain semiclassically the RMT results for
the energy-averaged two-point correlator of spectral determinants,

Cβ(e) = lim
d̄→∞

〈�(E + e/(2d̄))�(E − e/(2d̄))〉E
〈�(E)2〉E , (7)

starting from the semiclassical representation �R2(E) and using the knowledge about action
correlations between orbits and pseudo-orbits. The index β in equation (7) refers to the
universality class, i.e. β = 1, 2 for the orthogonal and unitary cases, respectively. This
problem was first addressed by Kettemann et al [11] in the context of quantum maps using
the diagonal approximation. The quantity, Cβ=2(e), was then reconsidered in the diagonal
approximation in [10] for continuous flows applying the methods of [5]. In both cases, the
calculations show perfect agreement with the universal RMT results for the unitary case:

CRMT
β=2 (e) ∝ sin πe

πe
. (8)

Here the proportionality sign indicates that we focus on the universal part of Cβ(e) and do not
consider the semiclassical calculation of the prefactor.

In the case of time-reversal symmetry, however, [11] could not obtain semiclassically the
RMT result:

CRMT
β=1 (e) ∝

(
cos πe

(πe)2
− sin πe

(πe)3

)
. (9)

In this paper, we evaluate Cβ(e) beyond the diagonal approximation. Using semiclassical
techniques to account for action correlations and its natural extension to pseudo-orbit
correlations we first demonstrate in section 2 that the pseudo-orbit correlations, shown to
cancel in the calculation of the spectral density correlator [5], do not vanish when one
considers the simplest non-rational function of spectral determinants, i.e. equation (7). We
show, furthermore, by explicit implementation of �R1(E) that the problem, i.e. the apparent
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Figure 2. Sketch of an ‘eight’ diagram, an example of correlated pseudo-orbits [5].

disagreement with RMT, is not solved with the correct truncation of the sum over pseudo-
orbits. The third section is devoted to a corresponding field-theoretical analysis of Cβ(e),
showing that the additional terms we find in our semiclassical analysis are canceled in field
theory by so-called curvature contributions. In the fourth section, we then provide a new type
of correlation between pseudo-orbits that allows us to semiclassically recover the RMT result
in the unitary and, for the first time, also in the orthogonal case. After a discussion of the
consistency of our results with previous results in the fifth section we finally conclude.

2. Semiclassical calculation

We semiclassically evaluate the correlator, Cβ(e), by means of �R2(E). Upon substituting
equations (4) and (6) into the numerator of equation (7), this leads to〈
�

(
E +

e

2d̄

)
�

(
E − e

2d̄

) 〉
E

= 2B2(E)�e−iπe

〈∑
A,B

FAF ∗
B(−1)nA+nB e(i/h̄)(SA−SB) eiπe(τA+τB)

〉
E

, (10)

where τA,B = TA,B/TH are the periods of the pseudo-orbits A,B in units of the Heisenberg
time TH = 2πh̄d̄ , and where we neglected highly oscillatory terms in E. We also expanded
the actions of the pseudo-orbits around E. In the diagonal approximation, i.e. when selecting
A = B, we can write the resulting sum over pseudo-orbits as an exponentiated sum over
orbits a [5]. The Hannay and Ozorio de Almeida sum rule [12] is afterwards used to replace
the sum over orbits,

∑
a |Fa|2 (.), by

∫ ∞
T0

dT
T

(.), where the minimal period T0 will produce an
e-independent prefactor that cancels due to the denominator in equation (7). We finally obtain
in diagonal approximation the first term in the squared brackets in

Cβ(e) ∝ −� e−iπe

(iπe)2/β
[1 + C̃β(e)]. (11)

The function, C̃β(e), contains all universal effects beyond the diagonal approximation,
consisting of both orbit and pseudo-orbit correlations. In the following, we compute C̃β(e) to
the leading order in 1/e.

In the unitary case, the leading order in 1/e contribution to C̃β=2(e) comes from the first
pseudo-orbit correlations, namely, the ‘eight-shaped’ diagrams; see figure 2 [5]. To be more
precise, we include in A a pseudo-orbit of order n, and in B a pseudo-orbit of order n + 1
and vice versa. All orbits contained in A and B are assumed to be equal except for those
forming an ‘eight’-orbit. This orbit consists of two components: one long orbit encountering
itself at one point and two independent orbits encountering each other near the encounter of
the first component. Both components are exponentially close to each other up to deviations
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in the encounter region. For the evaluation of this contribution, we follow [5]: �S = su is
the action difference of the two components with s, u being the difference of the stable and
unstable coordinates in a Poincaré surface of section placed in the encounter region of duration
tenc = 1

λ
ln

(
c2

|su|
)

with a classical constant c. Furthermore, the weight function counting how

often the long orbit of length T has an encounter is given by wT (s, u) = T (T −2tenc)

2tenc�(E)
, where

�(E) is the volume of the energy shell at energy E. Employing these expressions we obtain

C̃
eight
β=2(e) = −2

〈∫ c

−c

ds du

∫ ∞

2tenc

dT

T
wT (s, u) e(i/h̄)sue2π ieT /TH

〉
E

= − 1

π ie
, (12)

where the factor 2 in the first line results from the possibility of including the two short orbits
in the A- or B-sum in equation (10). The second line is obtained after first performing the
time integral exactly and then extracting from the resulting expression the contribution that is
the leading order in h̄ and that is not canceled by the energy average. We thereby use the rule
from [4] that only terms independent of tenc contribute and yield 1

�(E)

∫ c

−c
ds du e(i/h̄)su = 1

TH
.

Using the expression obtained for C̃
eight
β=2(e) in equation (12) now in equation (11) gives a result

which is inconsistent with the RMT prediction (8).
In the orthogonal case, we must also consider the contribution, C̃∞

β=1(e), from the
‘∞-shaped’ orbit pair sketched in figure 1, apart from the ‘eight-shaped’ contribution.
Furthermore, in the latter the possible time-reversal operation leaving invariant each of the
orbits must be taken into account. The calculations follow the same lines as for the unitary
case, and we obtain

C̃
eight
β=1(e) = − 4

iπe
, (13)

C̃∞
β=1(e) = 1

iπe
. (14)

Again this result contains extra terms resulting from the ‘eight-shaped’ diagram when
compared with the corresponding RMT result (9). We note that the contribution, C̃∞

β=1(e),

alone yields a result consistent with the RMT prediction.
We can conclude that although the analysis based on the semiclassical representation

�R2(E) of the spectral determinant produces the same structure as the RMT results (both
are naturally ordered in powers in 1/e), the terms (12), (13) following from semiclassical
loop contributions are not consistent with RMT and spoil the agreement found between RMT
and the results in [10, 11] based on the diagonal approximation. Moreover, using the same
methods we also obtain non-vanishing contributions of higher order in 1/e [13, 14].

A natural candidate to solve the discrepancy is to use �R1(E), equation (5), in the
semiclassical calculation instead of �R2(E). The required truncation of the sum over pseudo-
orbits can be exactly incorporated by means of the representation,

	(TH/2 − TA) = 1

2π

∫ TH /2

0
dx

∫ ∞

−∞
dk eik(x−TA), (15)

for the step function3. Including equation (15) in the semiclassical calculation presented above,
we end up with an integral which must be solved numerically [13]. The result clearly shows that
the extra contributions coming from the ‘eight-shaped’ diagram will not be corrected by using

3 A similar calculation based on a different representation of the step function was attempted in [10] for the diagonal
contribution, but it requires separate analyses of the two limits of large and small energy differences, e.
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the fully resurgent expression (5) for the semiclassical spectral determinant. Furthermore, we
rule out that the additional terms result from replacing in �R1(E) the smooth step function,

	σ(TH/2 − TA) = 1√
π

∫ ∞

(TA−TH /2)/σ

dx e−x2
, (16)

suggested in [8], by a sharp cutoff. More explicitly, using a Sommerfeld expansion we showed
that the smooth cutoff only adds to the result with sharp cutoff terms proportional to σn with
n ∈ N. These additional terms vanish when σ is sent to zero at the end of the calculation,
meaning that the two limits σ → 0 and the semiclassical limit h̄ → 0 commute.

Obviously, the problem requires a better insight into the meaning of the pseudo-orbit
correlations. Such an insight is gained through the comparison with a corresponding field-
theoretical approach.

3. Field-theoretical calculation: the curvature contribution

In order to better understand the difference between the semiclassical and the RMT results, we
calculate Cβ(e) by field-theoretical methods [15]. Our approach consists of transforming
the non-perturbative field-theoretical expression for Cβ(e) into a perturbative expansion.
As we will see, the difference between the semiclassical and the RMT results has a direct
correspondence in the field theory.

We start with the non-perturbative evaluation of the integral following from field-
theoretical considerations, which is given by [14]

Cβ(e) ∝ 1

4π

∫
S

dμ(S) e−i βπe

4 TrS, (17)

with S ∈ Sp(4)/ (Sp(2) ∗ Sp(2)) in the orthogonal and S ∈ U(2)/ (U(1) ∗ U(1)) in the
unitary case. Parameterizing the latter space in terms of angles θ and φ, we obtain in the
unitary case

Cβ=2(e) ∝ 1

4π

∫ 2π

0
dφ

∫ 1

−1
d cos θ e−iπe cos θ = sin πe

πe
. (18)

In a similar way, we obtain in the orthogonal case

Cβ=1(e) ∝ cos πe

(πe)2 − sin πe

(πe)3 , (19)

in agreement with CRMT
β (e). A perturbative evaluation of the field-theoretical expressions, in

the form of a power series in 1/e that is comparable to semiclassics, is obtained by replacing
the integration variables on the sphere by stereographic projection variables in the complex
plane. We, therefore, rewrite S as

S =
(

112/β 0
0 −112/β

)
T

(
112/β 0

0 −112/β

)
T −1, (20)

with

T =
(

112/β −B†

B 112/β

)
(21)

and B ∈ C in the unitary and

B =
(

B1 −B2

B∗
2 B∗

1

)
(22)

6
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with B1, B2 ∈ C in the orthogonal case. We used here the dagger to indicate the Hermitian
conjugate of a matrix and the power −1 for its inverse.

The effect of this parameterization is twofold: on the one hand this variable transformation
has a non-trivial Jacobian corresponding to a curved measure:

dμ(S) = 4[dB]

(1 + B2)4/β
, (23)

with B = |B|, [dB] = dB dB∗ in the unitary and B =
√

|B1|2 + |B2|2, [dB] =
dB1 dB2 dB∗

1 dB∗
2 in the orthogonal case. On the other hand, it leads to a particular form

of the phase in the exponential:

Tr S = 4

β

(
1 + 2

∞∑
k=1

(−1)k B2k

)
. (24)

For this particular parameterization of the integral in equation (17), we can
unambiguously identify two kinds of terms in the 1/e expansion of the correlator obtained by
using in the unitary case,

∫ ∞
0 dB|B|2ke−2π ie|B|2 ∝ (1/e)k+1, and the corresponding relation for

B1 and B2 in the orthogonal case. We will call these terms simply phase contributions if the
factor in front of the exponential in the last integral results from expanding the right-hand side
of equation (24) and curvature contributions if it results from expanding the right-hand side of
equation (23) in powers of B.

The key point is that we find agreement between the field-theoretical and the semiclassical
results (12)–(14), by evaluating equation (17) and ignoring the terms originating from the
curvature of the measure, i.e. replacing (1 + B2)−4/β in equation (23) by a constant [13, 14].
Clearly, what we are missing in the semiclassical calculation are the analogs of the terms that
can be derived from curvature. This means that a new kind of pseudo-orbit correlation is
lacking which corresponds to the curvature effects.

It is important to note that curvature effects did not appear in the case of the spectral
generating function in [5] because in the corresponding field-theoretical analysis the curvature
factor had to be taken there to the rth power with the replica index r and was thus vanishing
in the replica limit r → 0. In practice, this observation can be extended to any measure of the
fluctuations which is expressed as an homogeneous rational function of spectral determinants.

4. Semiclassical interpretation of curvature effects

In this section, we present the missing pseudo-orbit correlations which provide the curvature
effects in the integration over the curved manifold in the field-theoretical approach and thereby
consistency with RMT. The essential step is to lift the constraint that one of the short periodic
orbits does not surround the other one more than once. This assumption is implicit in the
calculation of the ‘eight-shaped’ diagrams in [5] when one assumes that both short orbits have
periods larger than the encounter time.

To be precise, we consider as components of a pseudo-orbit two periodic orbits (dashed
and full line in figure 3) which include several traversals around a common short periodic
orbit γp and differ in the number of repetitions by one. In order to find further contributions
to equation (10), we have to look for pseudo-orbit pairs possessing almost equal actions: we
thus pair the short periodic orbit γp and the orbit surrounding it (k − 1) times with the orbit
surrounding it k times. This way of pairing can be described in terms of symbolic dynamics
in the following way: we consider an orbit traversing a loop γl once and a short periodic orbit
γp k times possessing the symbolic notation γlγ

k
p . This orbit is paired with a pseudo-orbit

consisting of the orbit γp and an orbit traversing γl once and γp (k − 1) times; this pair has the

7
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Figure 3. Sketch of a pair of pseudo-orbits A, B correlated in such a way that one of the orbits
(dashed-dotted) has a period smaller than the encounter time. The two long orbits (dashed and full
line) differ in the number of traversals around the short periodic orbit γp by one.

symbolic code (γp)
(
γlγ

k−1
p

)
. This situation occurs in the case, when the encounter time tenc is

longer than the shortest of the periodic orbits, i.e. when the encounters overlap.
For the evaluation of this contribution, we again need the action difference between the

two orbits, obtained as �S = su [16] up to a negligible correction and the weight function as
a function of s, u that is given by wT,Tp(s, u) = T Tp

2�(E)tenc
expressed through the periods of the

two short periodic orbits, T and Tp. The winding number n of the orbit with duration T around
that with duration Tp is then given by n = tenc

Tp
. This implies that the integration over Tp for

fixed s, u contains a summation over all possible winding numbers. Using these results and
applying the sum rule from [12] with respect to T and Tp, we find for C̃β=2(e) the additional
‘curvature’ contribution:

C̃curv
β=2(e) = −4

〈∫ c

−c

ds du

∫ ∞

tenc

dT

T

∫ tenc

0

dTp

Tp
e(i/h̄)su e2π ie(T +Tp)/TH wT,Tp(s, u)

〉
E

= 1

iπe
.

(25)

To obtain the final result in equation (25) we perform first the time integrals exactly and
afterwards do the s, u-integrals like described after equation (12). The resulting expression
for C̃curv

β=2(e) thus precisely cancels the undesired term (12) coming from the ‘eight-shaped’
diagram, and allows for the full explanation of the RMT result (8) in purely semiclassical
terms.

In the orthogonal case, one obtains in a similar way

C̃curv
β=1(e) = 4

iπe
, (26)

canceling again the extra term (13) and yielding the universal RMT result (9).
We could thus identify the semiclassical analog of the field-theoretical curvature

contributions. As in the field-theoretical case, the splitting between the two diagrams analyzed
in the semiclassical calculation in sections 2 and 4 is completely arbitrary; the final result, the
sum of the two is, however, always the same. This can be taken into account by considering as
reference orbits in the calculation of the weight function always the two short orbits as we did
above equation (25) and by allowing for an arbitrary length of one of the two periodic orbits
as long as the other one is longer than the duration of the encounter. This yields

C̃
eight
β=2(e) + C̃curv

β=2(e) = −2

〈∫ c

−c

ds du

∫ ∞

0

dT

T

∫ ∞

0

dTp

Tp
e(i/h̄)su e2π ie(T +Tp)/TH wT,Tp(s, u)

+ 2
∫ c

−c

ds du

∫ tenc

0

dT

T

∫ tenc

0

dTp

Tp
e(i/h̄)su e2π ie(T +Tp)/TH wT,Tp(s, u)

〉
E

= 0, (27)

8
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Figure 4. Encounter overlap for different encounters.

i.e. the sum of the two contributions calculated in the sections 2 and 4. The splitting of the two
contributions in our semiclassical calculation showed, however, the one-to-one correspondence
to the corresponding field-theoretical contributions after the stereographic projection.

We want to emphasize here the different behavior of an ‘eight’ orbit and the ‘∞’ orbit
pair in figure 1: for an ‘eight’ orbit with overlapping encounters, one of the short orbits winds
around the other and thus yields another non-trivial contribution, which is not yet contained in
the diagonal terms. In the case of an ‘∞’ orbit pair with overlapping encounters, however, the
orbit and its partner traverse the whole orbit in the same direction, which is already contained
in the diagonal contribution.

By this calculation we demonstrated that overlapping encounter regions, never considered
before in evaluations of energy-averaged quantities neglecting the Ehrenfest time dependence
[17], can lead to non-vanishing contributions even for vanishing Ehrenfest time. One question,
however, has to be addressed at this point: when are effects of the encounter overlap important
and when can they be neglected? This point will be answered in the following section.

5. Consistency with former results

Also in the former semiclassical calculations to reproduce RMT-result diagrams involving
orbits surrounding a short periodic orbit occurred. Here we discuss the consistency of our
results with those approaches.

5.1. Approaches involving orbits (but no pseudo-orbits)

In this case, an overlap of encounters can only happen for different encounters, that means, it is
not possible that the ends of one encounter come close to each other, because, otherwise, there
exist only disconnected partner orbits. One simple example for a possible diagram, where a
longer orbit surrounds a short periodic orbit is shown in figure 4.

In this case, however, a calculation similar to that for the spectral form factor for finite
Ehrenfest time [17] shows that the resulting contribution contains, for an arbitrary time of the
surrounded periodic orbit Tp, just the configurations of two independent encounters of two
orbital parts and one encounter of three parts. Such configurations were already taken into
account in [4]. In particular, this means that we do not find a different result by also taking
into account a configuration where a periodic orbit is surrounded by a longer one many times.

5.2. Approaches involving pseudo-orbits

In [5], the contribution from ‘eight-shaped’ orbits vanishes also, but for a different reason:
the contributions arising from different possibilities of including the ‘eight-shaped’ orbit

9
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in the pseudo-orbit sums cancel (giving agreement with RMT). However, this method is not
applicable in general, as was shown in this paper. Still this will not pose a problem for measures
of the spectral fluctuations based on the density of states, since they involve homogeneous
rational functions of spectral determinants.

6. Conclusions

We have shown that the semiclassical approach from [5] applied to the two-point correlator of
spectral determinants (and we believe this also holds for any measure involving only products
of spectral determinants) produces spurious terms coming from pseudo-orbit correlations,
spoiling agreement with the universal RMT results. We argued that the appearance of extra
terms in the correlator is not solved by the strict use of the resurgent spectral determinant,
and that a new additional mechanism is required. This contribution consists of pseudo-
orbit correlations represented by encounter diagrams with overlapping encounters. We have
shown that these effects are the semiclassical analog of the curvature contributions in the
field-theoretical approach, thus providing a semiclassical interpretation of the latter. In the
discussion of the consistency of our results with previous approaches, we have shown that
completely lifting the assumption of well-separated encounters in the cases when it is not
justified does not change the results from previous calculations. We thus take into account in
this paper the effect of all allowed positions of encounters.

Our results can be extended in various directions: first, concerning the study of action
correlations between orbits it would be interesting to further analyze the new diagram type
with overlapping encounters identified in this paper: are there other quantities apart from the
product of two spectral determinants, where this correlation is essential to reproduce the RMT
results or do similar correlations lead to further undiscovered contributions? Furthermore,
we mention that, although there is an increasing amount of evidence pointing toward the
exhaustive character of the expansion in loops, this approach cannot be considered yet at the
same level as, for example, a well-controlled perturbative diagrammatic treatment. Although
the rigorous and systematic calculation based on loops is of paramount importance for a
semiclassical understanding of the BGS conjecture, it is possible that new mechanisms of action
correlations are still waiting to be found. Second, as the correlator of two spectral determinants
can be used to describe certain features of localization [18], it would be interesting to use the
field-theoretical calculation presented in [18] as a guideline for a semiclassical approach to
localization.
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